
Conscious choices in cross-breeding: Making money through the heterosis

Troy Rowan University of Tennessee - Animal Science Estonian Beef Breeders Training November 28, 2023

Which traits matter to our profitability?

"Revenue-generating" traits

Live calf Weaned pounds

"Cost" (aka replacement female) traits

The easiest way to improve <u>all</u> economically important traits?:

CROSSBREED!

What keeps us from crossbreeding?

Buyers (& Feeders & Packers) demand uniformity

Mongrelized cattle = more variation in quality and performance

Challenges introducing multiple breeds in "one-bull" herds

Personal preferences?

Organized Crossbreeding vs. Mongrelization

Two-fold advantage of crossbreeding

- 1) Breed complementarity
 - Align multiple breed strengths
 - e.g. Charolais lean growth, Hereford fertility, etc.
 - Bos indicus environmental adaptation

Breed complementarity (USA) in terminal crossbreeding program

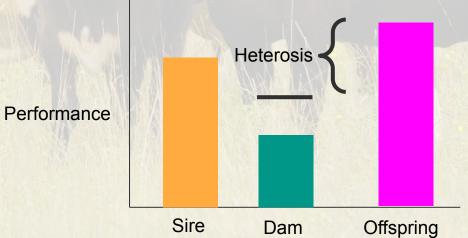
Breed [*]	Birth Wt. (lb) ¹	Weaning Wt. (lb) ¹	Yearling Wt. (lb) ¹	Mature Wt. (lb) ^{1,2}	Maternal Milk (lb) ¹	Marbling Score ³	Ribeye Area (in ²) ⁴	Fat (in)⁵	Carcass Wt.(lb) ¹	Lean to-fat ⁶	BCS ⁷	FE Index Steer ⁸
Angus	**	****	****	****	****	****	**	****	****	*	****	**
Beefmaster	***	***	***	**	**						***	****
Angus Beefmaster Brahman	*****	****	***	****	***	*	**	***	**	***	****	***
Brangus Braunvieh	***	***	***	***	****						***	**
Braunvieh Charolais Chiangus Gelbvieh Hereford Limousin	***	**	**	*	****	***	****	**	**	****	*	***
Charolais	****	****	****	****	***	***	****	**	****	****	****	***
Chiangus	***	**	**	***	***	***	***	***	***	***	***	****
Gelbvieh	***	****	****	**	****	***	****	***	****	***	**	***
Hereford	***	***	***	***	**	***	**	****	***	**	****	***
Limousin	**	***	***	**	***	***	****	***	****	***	**	****
Maine-Anjou	***	*	*	***	*	**	****	**	**	****	***	****
Red Angus	*	***	****	***	****	****	**	****	****	*	****	**
Salers	**	***	***	****	****	**	****	**	**	****	***	***
Santa Gertrudis	***	***	***	***	***	**	*	****	***	**	**	****
Shorthorn	****	**	**	***	***	***	**	***	***	***	**	***
Simmental	***	****	****	****	***	***	****	***	****	***	***	**
South Devon	***	**	**		***	***	***	**	**	***		*
Tarentaise	**	***	**		**							***

• 2023-1 Breed Comparison• www.eBEEF.org

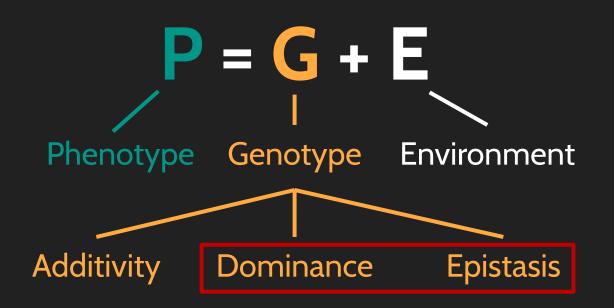
Crossbreeding plans MUST align with a herd's breeding goals!

- Not appropriate to use a maternal bull when all calves are marketed as terminal
 - We lose out on carcass performance in this case!
- Keeping replacement females?
 - Two terminal breeds could decrease cow overall efficiency
- Are there premiums for a certain type of cattle?
 - In US, black-hided cattle have an associated premium
- Can I afford NOT to crossbreed?

Two-fold advantage of crossbreeding


- 1) Breed complementarity
 - Align multiple breed strengths
 - e.g. Charolais lean growth, Hereford fertility, etc.
 - Bos indicus environmental adaptation
- 2) Heterosis
 - Superior performance of crossbred offspring compared with parent-average
 - Complex mechanism, clear results

% Heterosis = [(crossbred avg. – straightbred avg.) ÷ straightbred avg.] x 100

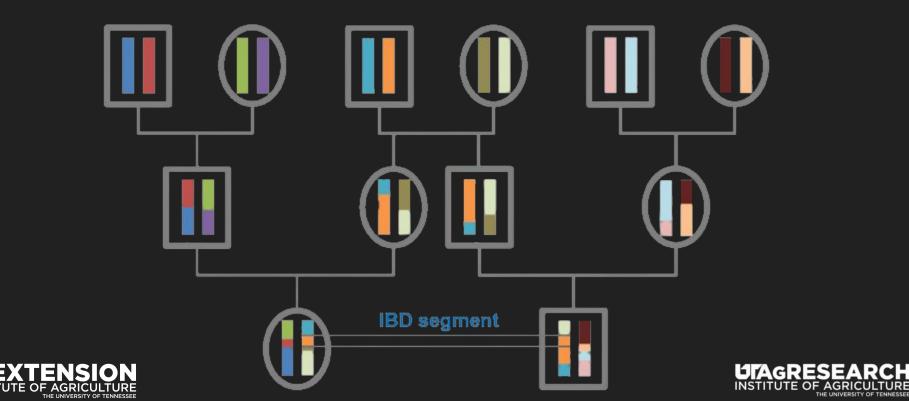

Crossbreeding reverses the effects of inbreeding

The nuts and bolts of heterosis



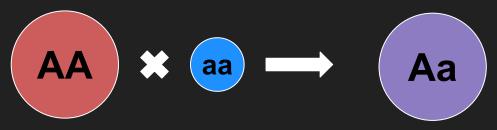
Additivity

Dominance

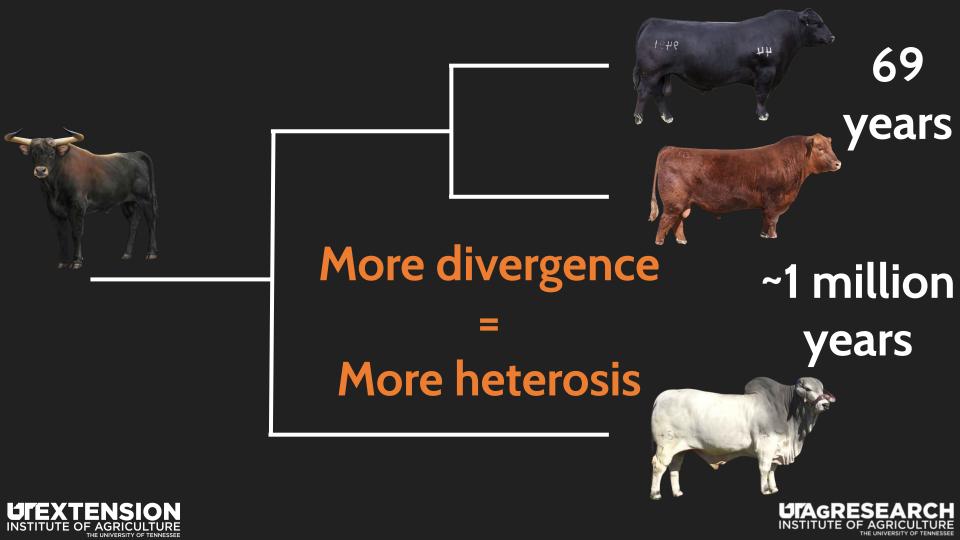


INST

Overdominance


Purebred animals are more <u>homozygous</u> across DNA <u>"Identity-by-descent</u>"

INSTIT


Hereford x Angus

Crossbreeding "Unlocks" genetic potential at non-additive loci

Heterosis is inversely related to heritability

Trait	Heritability	Level of Heterosis
Carcass/end product Skeletal Measurements Mature Weight	High (0.4-0.8)	Low (0 to 5%)

Adapted from: https://beef-cattle.extension.org/crossbreeding-for-the-commercial-beef-producer/

INSTITUTE OF AGRICULTURE THE UNIVERSITY OF TENNESSEE

A crossbred calf is great...

Direct heterosis (estimated by Cundif & Gregory 1999)

Trait	Observed Improvement	%Heterosis
Calving rate	3.2%	4.4
Survival to weaning	1.4%	1.9
Birth weight	0.77 kg	2.4
Weaning weight	7.4 kg	3.9
Average daily gain	0.03 kg/day	2.6
Yearling weight	13.2 kg	3.8

But crossbred females are the MOST Valuable

Which traits matter to our bottom line?

"Revenue-generating" traits

Live calf Weaned pounds

"Cost" (aka replacement female) traits

Developing heifers is EXPENSIVE!

<u>Cow-longevity</u> is the most important component of efficiency, sustainability, and profitability!

Maternal heterosis (estimated by Cundif & Gregory 1999)

Trait	Observed Improvement	%Heterosis
Calving rate	3.5%	3.7
Survival to weaning	0.8%	1.5
Birth weight	0.72 kg	1.8
Weaning weight	8.2 kg	3.9
Longevity	1.36 years	16.2
Cow lifetime product	ion	
Number of calves	0.97 calves	17.0
Cumulative weaning weight	272.2 kg	25.3

What does an extra calf per cow mean?

1) Cow has another calf after her payback period (profit)

2) One less heifer to develop in cow's place (cost savings)

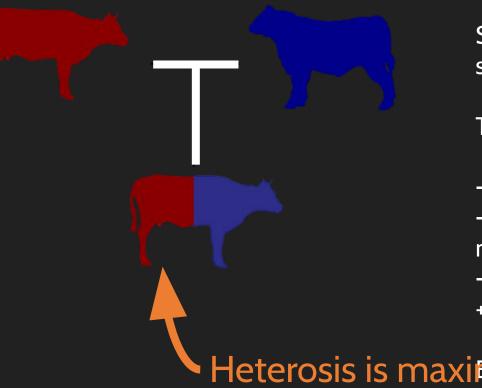
3) One more animal to market as a feeder animal or a bred heifer (additional revenue)

Less than 50% of commercial herds in the USA crossbred!

We are leaving \$\$ on the table!

Heterosis is maximized in the first generation cross

Subsequent generations of "re-crossing" will fail to realize maximum heterosis

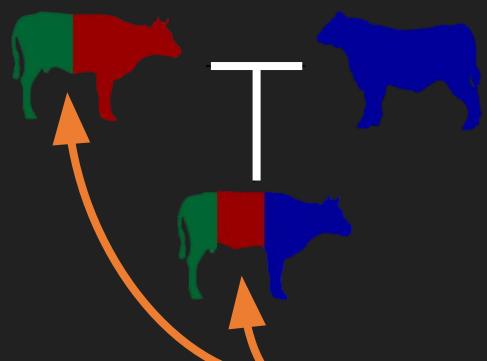


Crossbreeding systems allow us to maximize the amount of heterosis that is "retained" from generation to generation and helps herds become more uniform.

Crossbreeding Systems: Two Breed Terminal Cross

Straight-bred bull crossed with straight-bred cow

Terminal cross when stopped here


- Must purchase replacements
- All calves must be terminal (no maternal heterosis)
- No "retained heterosis in cow"
- + Simple to execute in small herds

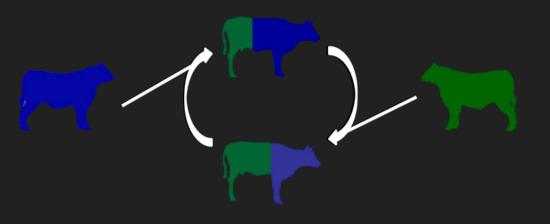
Heterosis is maxifixide this Bale Angus Cow

Crossbreeding Systems: Three breed terminal cross

Breeds F1 cow to straight-bred bull of a different breed

Results in terminal cross calf crop

Must purchase replacements
*Or have separate maternal rotation
+ Maximum heterosis in cow <u>and</u> calf
+ Simple to execute in small herds

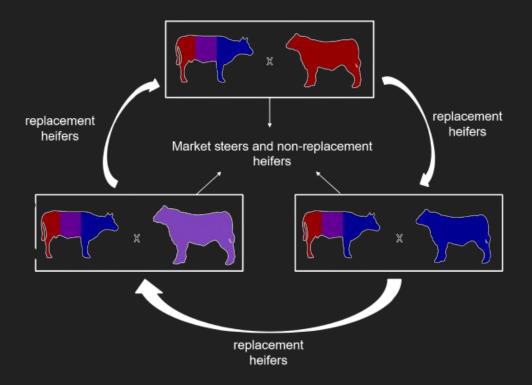

Ex. PB Charolais Bull x Baldy Cow

Heterosis is maximized in the "F1"

Crossbreeding Systems: Two-breed rotation

Breed replacement heifers to bull opposite breed of sire

Generates terminal and replacement animals


More difficult to take advantage of breed complementarity
Crossbred females generated
Requires two breeding pastures (herd size-dependent)

Ex. Angus x Hereford

Crossbreeding Systems: Three-breed rotation

Same as two-breed rotation, but with additional breed

More separation between replacements and bull in their pastures

- + Greater amounts of hybrid vigor
- + Retains more heterosis in cows
- Complex execution with minimum of three sire pastures

Type of System	% of Cow Herd	% of Marketed Calves	Advantage (%)ª	Retained Heterosis (%) ^b	Minimum # of Breeding Pastures	Minimum Herd Size	# of Breeds			
Two-breed Te	rminal Cr	oss (Figure	1)							
T x (A)	100	100	8.5	0°	1	Any	2			
Terminal Cros	ss with Pu	urchased F1	Females (Fig	ure 2)						
T x (A*B)	100	100	24	100	1	Any	3			
There is a trade off between										

There is a trade off between crossbreeding scheme complexity and retained heterosis

From https://beef-cattle. extension.org/cross breeding-for-the-c ommercial-beef-pr oducer/

reeds (Fig	ure 5)					
100	100	12	50 ^d	1	Any	2
100	100	15	67	1	Any	3
100	100	17	75	1	Any	4
elated F1	Bulls					
100	100	12	50	1	Any	2
100	100	16	67	1	Any	3
100	100	19	83	1	Any	4
	100 100 100 elated F1 I 100 100	100 100 100 100 related F1 Bulls 100 100 100 100	100 100 12 100 100 15 100 100 17 related F1 Bulls 100 100 12 100 100 16	100 100 12 50 ^d 100 100 15 67 100 100 17 75 related F1 Bulls 100 100 12 50 100 100 12 50 100 100 16 67	100 100 12 50 ^d 1 100 100 15 67 1 100 100 17 75 1 related F1 Bulls 100 100 12 50 1 100 100 12 50 1 100 100 16 67 1	100 100 12 50 ^d 1 Any 100 100 15 67 1 Any 100 100 17 75 1 Any related F1 Bulls 100 12 50 1 Any 100 100 12 50 1 Any 100 100 16 67 1 Any

Crossbreeding in Small Herds

Small Herd Challenges

- Keeping replacements means bulls must cycle in and out of herd to avoid sire-daughter matings
- Multiple breeding pastures is not possible/feasible
- Not possible to capture full % of heterosis in traits due to replacement female turnover rate.
- GREAT Publication with more details:
 https://extension.missouri.edu/publications/g2040

Small Herd Solutions: Two Breed Rotation

Year	1	2	3	4	5	6	7	8	9	10
Bull	B1	B1	B2	B2	A1	A1	A2	A2	B3	B3

- Rotate two breeds: Same bull for 2 years, same breed for 4 years
- More heterosis by rotating breeds every two bulls than every bull
- 59% of maximum heterosis (47% maximum maternal heterosis)
 - Compared with 72% (direct) and 56% (maternal) in large herd 2-breed rotation

Lamb and Tess, 1989

Small Herd Solutions: Three Breed Rotation

Year	1	2	3	4	5	6	7	8	9	10	11	12	13
Bull	B1	B1	B2	B2	C1	C1	C2	C2	A1	A1	A2	A2	B3

- Rotate <u>three breeds</u>: Same bull for 2 years, same breed for 4 years
- 77% of maximum heterosis (60% maximum maternal heterosis)
- More heterosis (direct & maternal) than in optimal 2-breed rotation

Lamb and Tess, 1989

Crossbreeding is the easiest way to increase a herd's overall productivity

Reach out with questions!

Magnitude of heterosis increases with lower heritabilities of trait & divergence of breeds

Crossbreeding systems pay! Both in calf pounds and improved replacement females

Crossbreeding systems can be implemented in any herd size!

Beef Genetics and Genomics Community of Practice with eXtension