

Amino acids in dairy nutrition: How to improve protein efficiency

> Dr Amélie CORNILLET DVM, VITALAC

Estonia, 21st November 2019

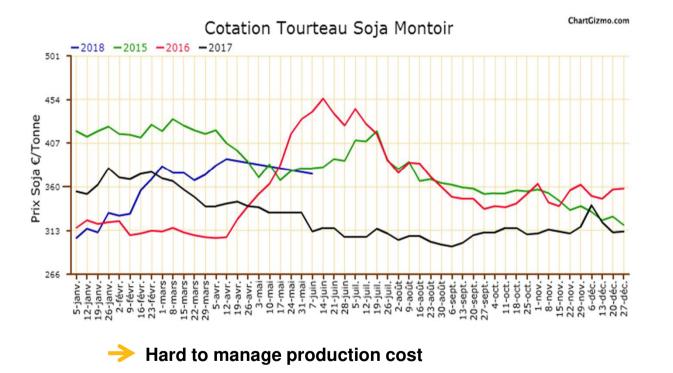
Protein situation in Ruminants

- Animal production in Europe depends on SOYA importation and its price fluctuations
- Non GM production and demand increases (beef and dairy)
- Ecology : demand for a reduction of nitrogen effluents

ALTERNATIVES to SOYA EXIST

DAIRY RATION COST : > 50% come from soya bean meal

Example of a dairy cow TMR :


INGREDIENTS 30 kg milk cow	Cost / T	Amont / day	Cost €/ day	% total cost
Grass silage	50	3.5 kg DM	0.175	6.7
Corn silage	50	14 kg DM	0.7	26.7
SOYA BEAN MEAL	375	4 Kg	1.5	57.1
Mineral feed	500	0.5 kg	0.25	9.5
TOTAL		22 KG DM	2.625	100

57% OF RATION COST IS SOYA
50 € / kl

COST OF SOYA MEAL highly variable

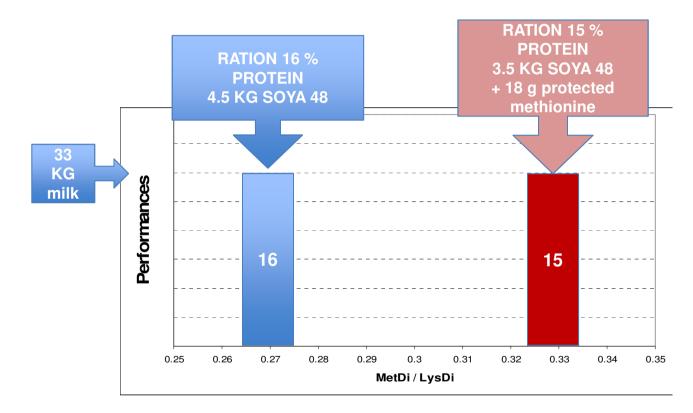
ALTERNATIVES to SOYA ...

INCREASE GRASS PART IN RATION ?

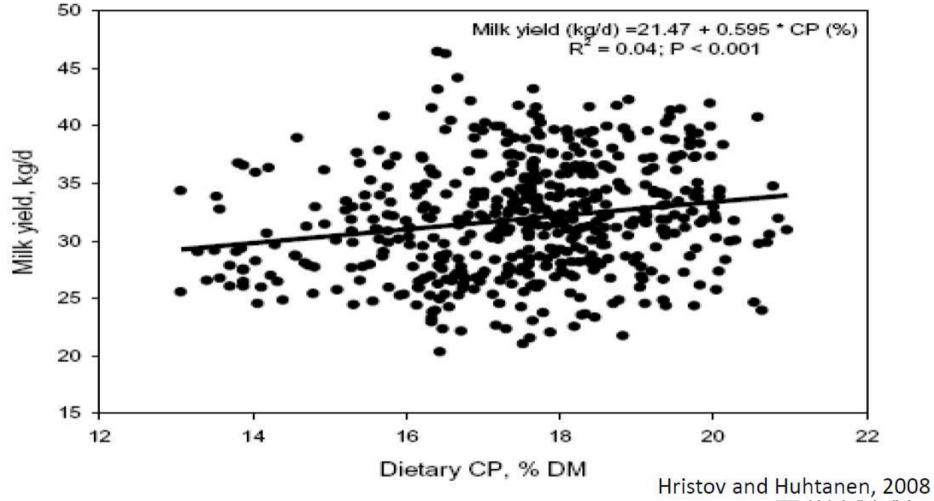
RISK = LOWER PERFORMANCES

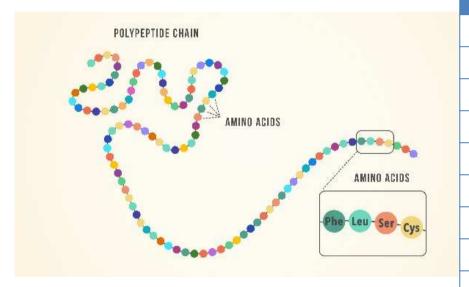
Because grass quality varies a lot : Weather, harvest time

OTHER MEALS ?


RAPESEED (1.4 kg rapeseed meal can replace 1 kg soya meal) SUNFLOWER BREWERS GRAIN DISTILLERS SOLUBLES UREA

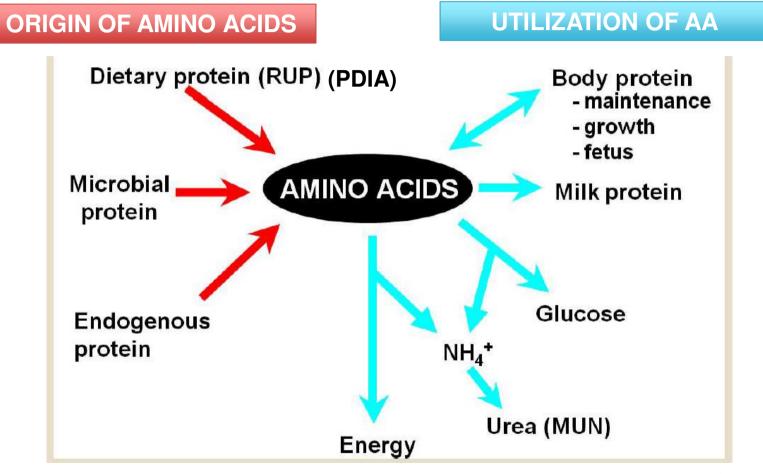
ALTERNATIVES to SOYA ...


FORMULATION on AMINO-ACIDS : METHIONINE / LYSINE


Crude protein is not a good criteria

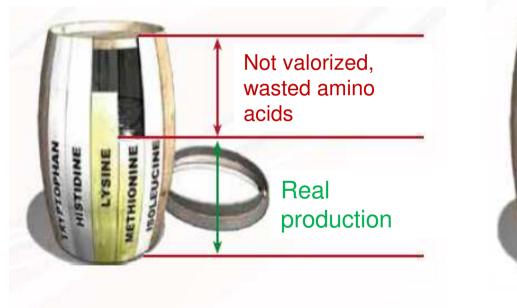
= VIIALAC

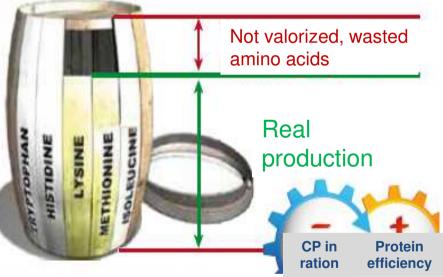
20 Amino acids



Essential AA	Non-essential AA		
Arginine	Alanine		
Histidine	Aspartic acid		
Isoleucine	Asparagine		
Leucine	Cysteine		
Lysine	Glutamic acid		
Methionine	Glycine		
Phenylalanine	Glutamine		
Threonine	Proline		
Tryptophan	Serine		
Valine	Tyrosine		

Supply and utilization of amino acids for the dairy cow




Limiting amino acids (Rulquin 2009) LYSINE / METHIONINE

CLASSICAL RATION

OPTIMIZED RATION

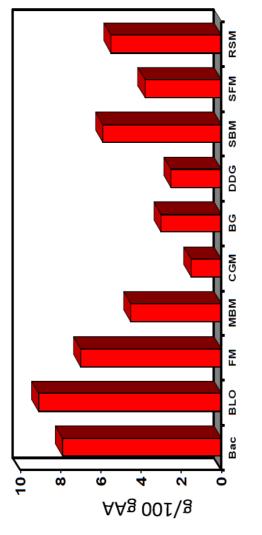
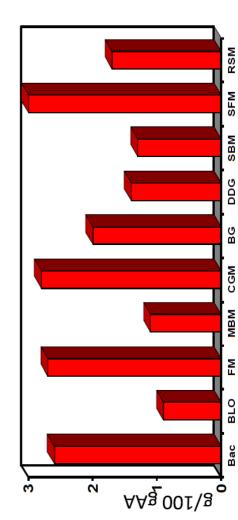

The milk protein synthesis is maximal when the AA profile is optimized, above all for LYSINE and METHIONINE

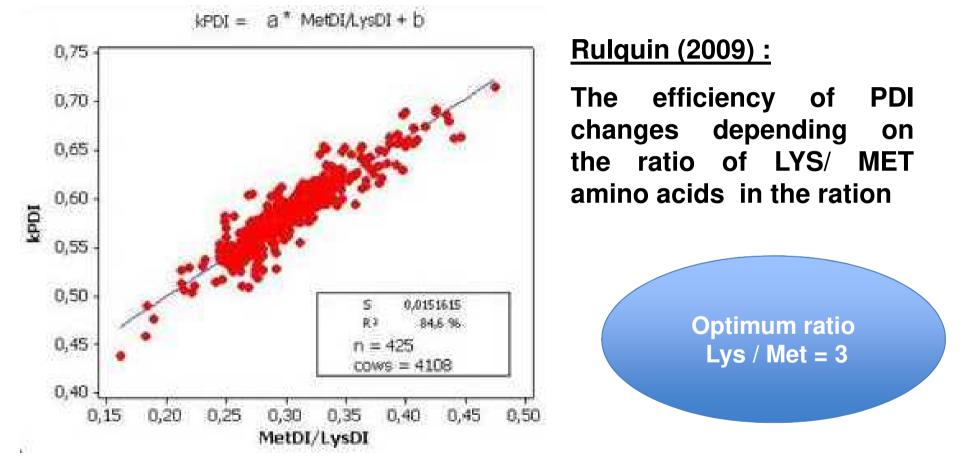
Table 1. Concentrations in CP of Lys and Met in milk¹, lean tissue¹ and rumen bacteria¹; suggested optimum concentrations in MP², and break-point estimates of required concentrations in MP for maximal content of milk protein³


	Lys	Met	·	Lys	Met
Milk	7.7	2.6	Brewer's grains	4.1	1.7
Lean tissue	6.4	2.0	Canola meal	5.6	1.9
Rumen bacteria	7.9	2.6	Corn DDGS	2.2	1.8
Optimum concentration	7.2	2.5	Corn gluten feed	2.7	1.6
"Required" (NRC, 2001)	7.2	2.4	Corn gluten meal	1.7	2.4
			Cotton seed	4.3	1.7
Alfalfa silage	4.4	1.4	Linseed meal	3.7	1.8
Corn silage	2.5	1.5	Soybean meal	6.3	1.4
Grass silage	3.3	1.2	Sunflower meal	3.6	2.3
Barley	3.6	1.7	Blood meal	9.0	1.2
Corn	2.8	2.1	Feather meal	2.6	0.8
Oats	4.2	2.9	Fish meal	7.7	2.8
Wheat	2.8	1.6	Meat meal	5.4	1.4

¹ Amino acid values for milk, lean tissue and rumen bacteria are from O'Connor et al. (1993), suggested optimum concentrations of AA in MP are from Doepel et al. (2004), and break-point estimates for required concentrations in MP for maximal content of milk protein and amino acid values for feeds are from NRC (2001).

Lysine in bacteria and supplements

Methionine in bacteria and supplements



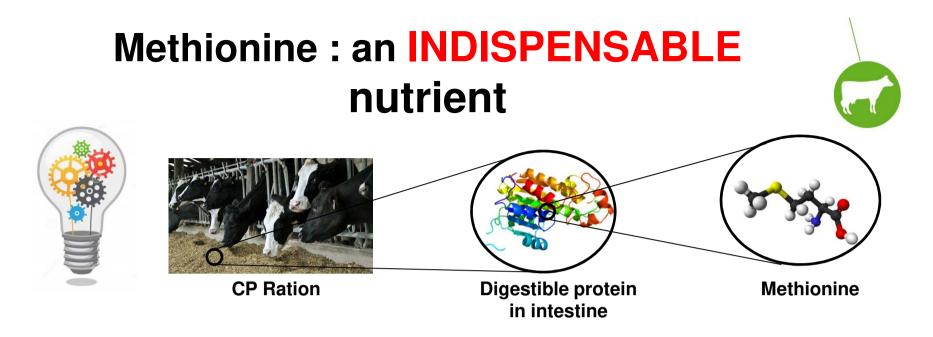
Efficiency of transformation into milk proteins

If LYS / MET = 4, we need 32 * 0.53 = 60 g PDI / L milk 3,2% protein

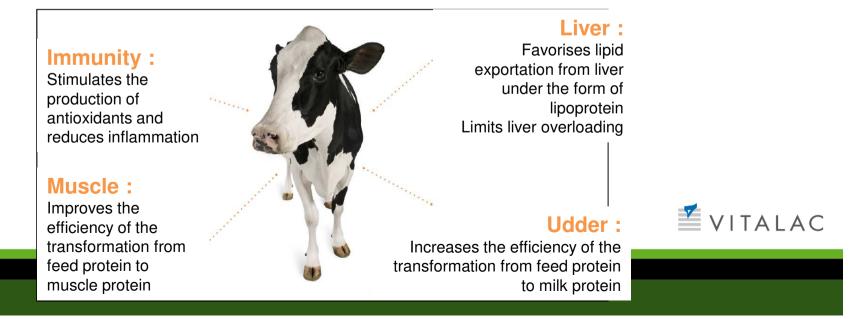
• If LYS / MET = 3, we need 32 * 0.60 = 53 g PDI / L milk 3,2% protein

➔ 13 % higher yield

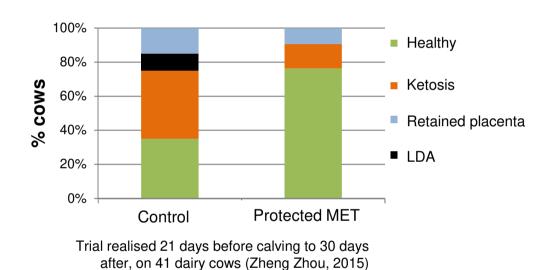
Major functions of AA


• LYSINE :

- Protein synthesis
- Reduction of nitric oxide synthesis, antiviral activity, protein methylation and acetylation
- Structre and function of collagen


• METHIONINE :

- Protein synthesis
- Via Adenosylmethionine : Methylation of proteins and DNA, synthesis of creatinine, epinephrine and polyamines, regulation of gene expression, onecarbon-unit metabolism
- Via homocysteine : Oxidant, inhibition of nitric oxide synthesis
- Via Betaine : Methyation of homocystein to methionine,
- Via Taurine: Anti oxydant, anti inflammatory, regulator of intracellular osmolality, conjugation with bile acids
- Via gluthation : Synthesis of prostaglandins, signal transduction, cell proliferation (hepatocytes, lymphocytes, intestinal epithelial cells), elicitation of immune response, oocyte development, sperm production and maturation
- → Methionine has many other roles than milk production


Health and productivity of a cow are determined from the close up period. Methionine is an indispensable nutrient for numerous metabolic processes :

Cows in good health

Protected methionine divides per 2 the metabolic diseases incidence

Average health costs: 106 €/cow/year (Eilyps, 2015) Cost of a ketosis: 250 €/case Fœtal membranes retention : 200 €/case LDA: 340 €/case

> GAIN with protected MET : 53 €/cow/year 106/2 = 53€

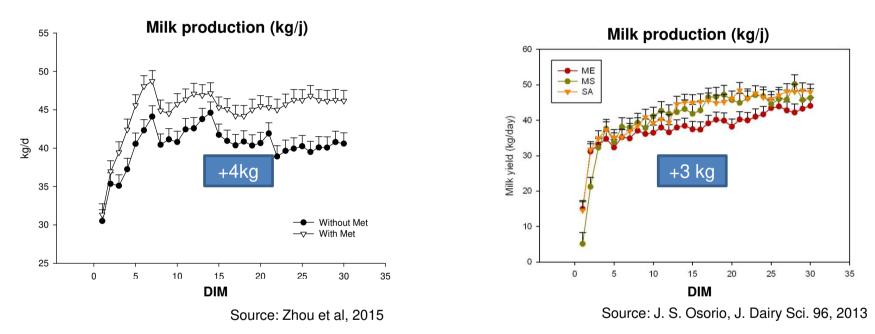
Cows fed with protected methionine have a limited lipidic storage and produce more natural antioxydants.

Those cows are in better conditions to face the parturition stress and associated risks.

Cost of peripartum diseases

(Compilation Dr Chuck Guard 1998- Hutjens 2005)

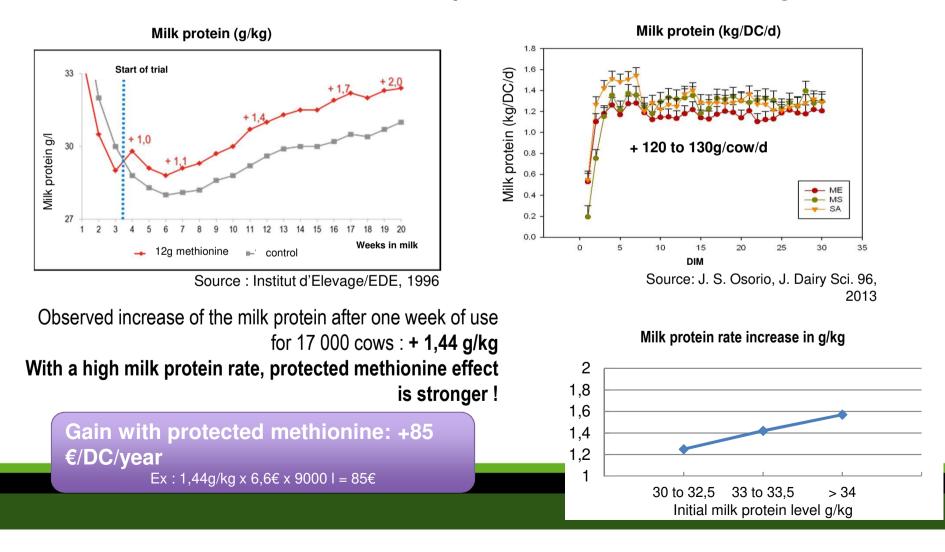
Diseases	% Mortality	% culling	Delay to conception (days)	Milk loss Kg	Cost / case
Milk fever	4	5	13	130	330 €
Dystocia	1	2.2	12	178	160 €
Retained placenta	1.5	6	15	250	200 €
Ketosis	0.5	5	20	230	250 €
DA	2	8	12	400	340 €
Mastitis	2	10	10	200	200 €
Metritis	1	10	25	250	250 €


VITALAC

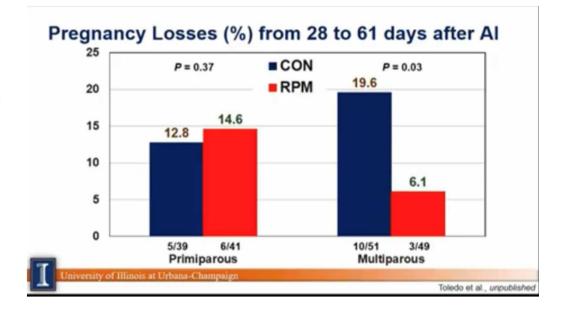
More productive dairy cows

Protected methionine allows + 7% milk production on one lactation cycle

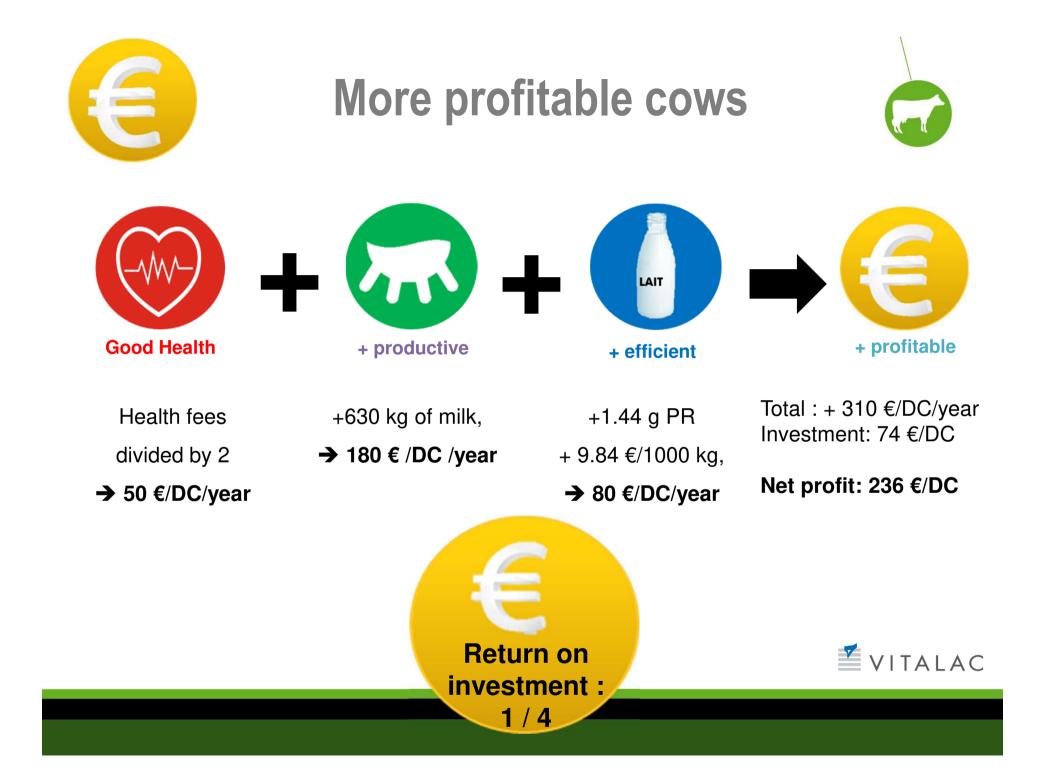
Particularly when started before calving


Production increase is only the expression of a better dairy cow health. Methionine's first objective is to cover the animal needs (liver & immunity).

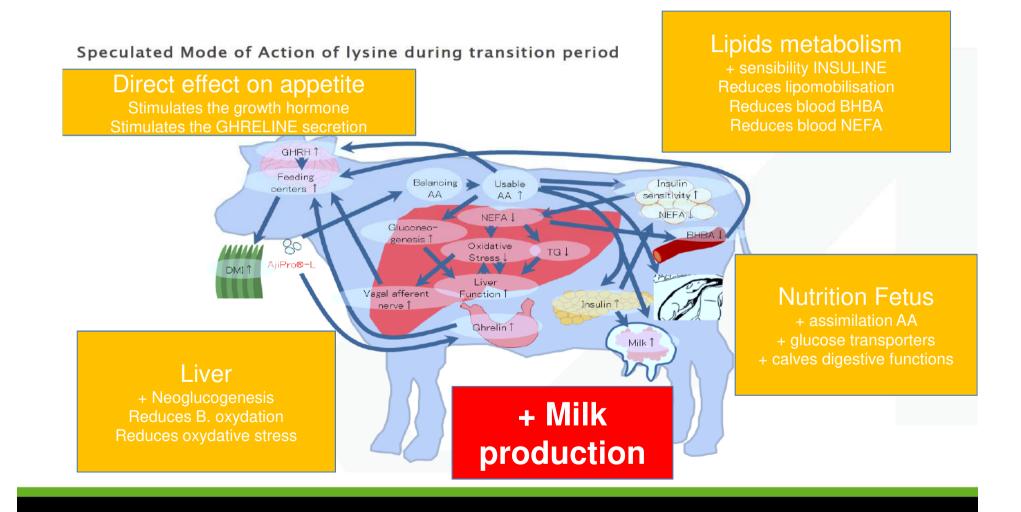
More efficient dairy cows

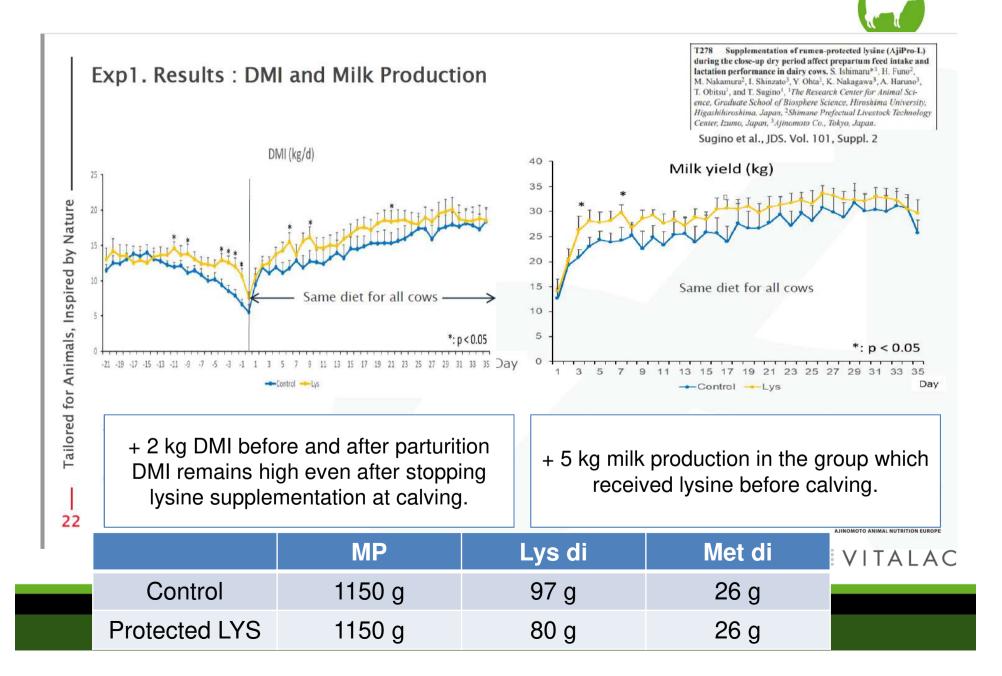

Protected methionine allows a milk protein rate increase of 1,44 g/l

Better fertility

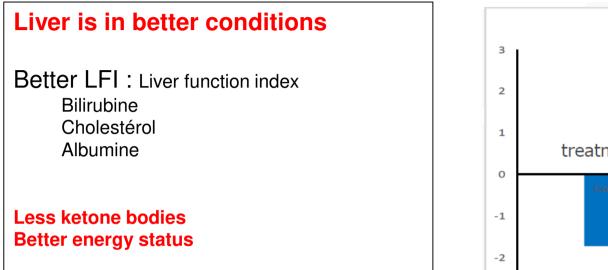


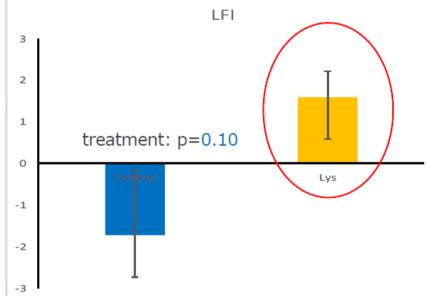
- New data show that:
 - Methionine is correlated with quality of follicle (size + oestrogen synthesis)
 - Methionine decreases preg loss between 28 to 60 days of pregnancy


Reminder : Cost of + 1 day open over 120 DIM = 3€

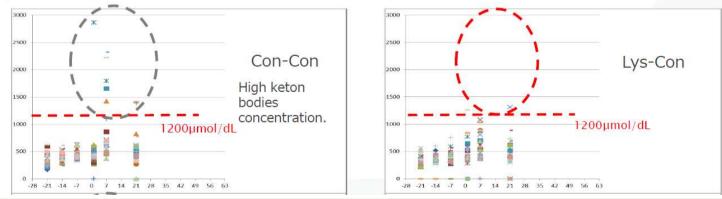


Effect of protected LYSINE

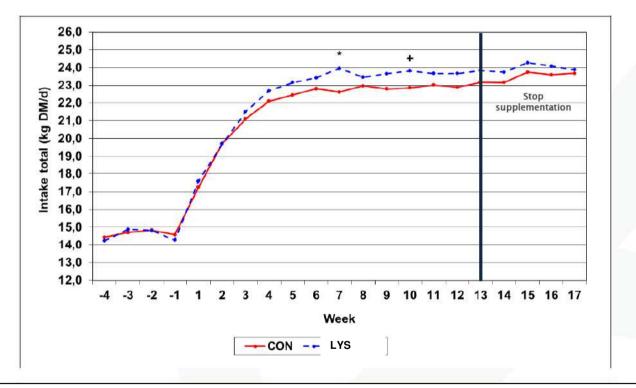

Effect of Lysine on close up cows



Effects of Lysine on close-up cows

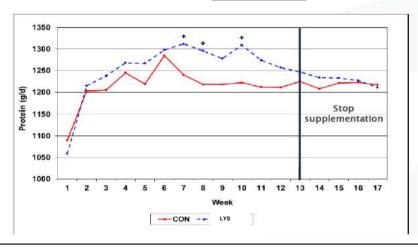


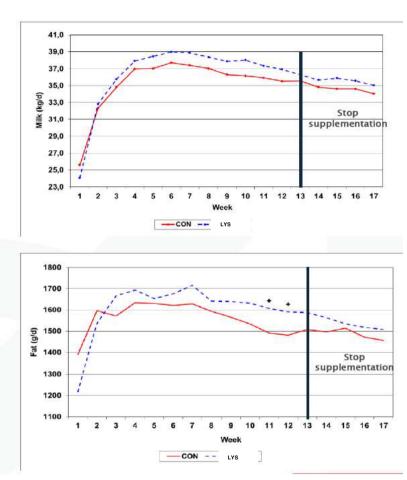
VITALAC


Exp.2 Results : Blood BHBA Concentration

Trial EU : effects of protected lysine (lys-MP 7.7-7%) on transition cows -W4 to W12

EU TRIAL Results : Impact on Dry Matter Intake

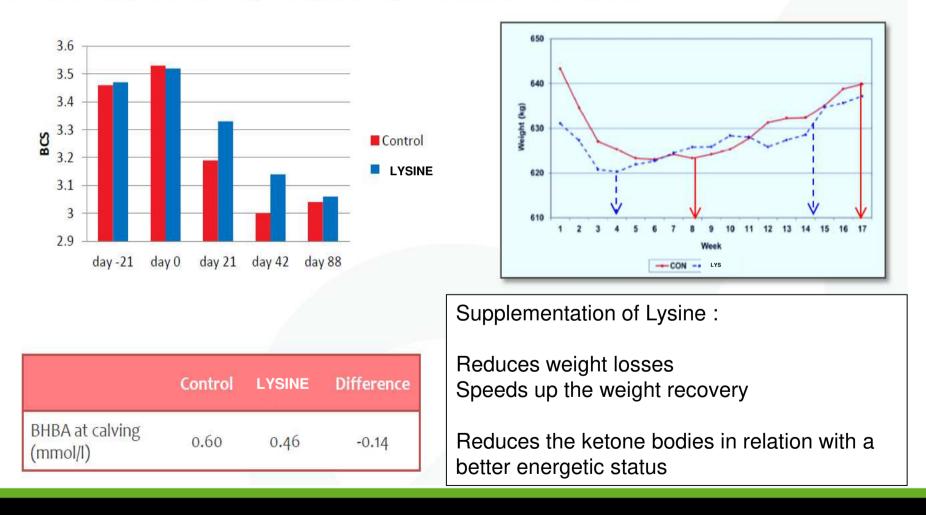

Supplementation in lysine increases DMI 0.5 to 1 kg / d 4 weeks after stopping the supplementation, DMI is back to the control group level



Trial EU : effects of protected lysine (lys-MP 7.7-7%) on transition cows -W4 to W12

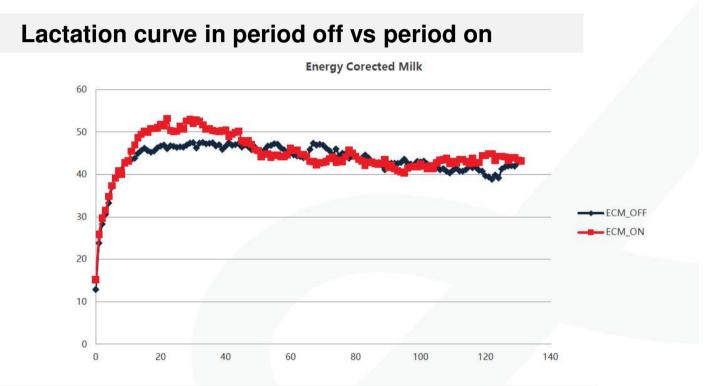
EU TRIAL Results : Impact on Milk production & solids

I	Control	LYSINE
Milk yield (kg)	35.2	36.3
Fat Protein Corrected Milk (kg)	37.8	38.9
% fat	4.43	4.40
% protein	3.45	3.44
Corr. milk 7%	39.6	40.65



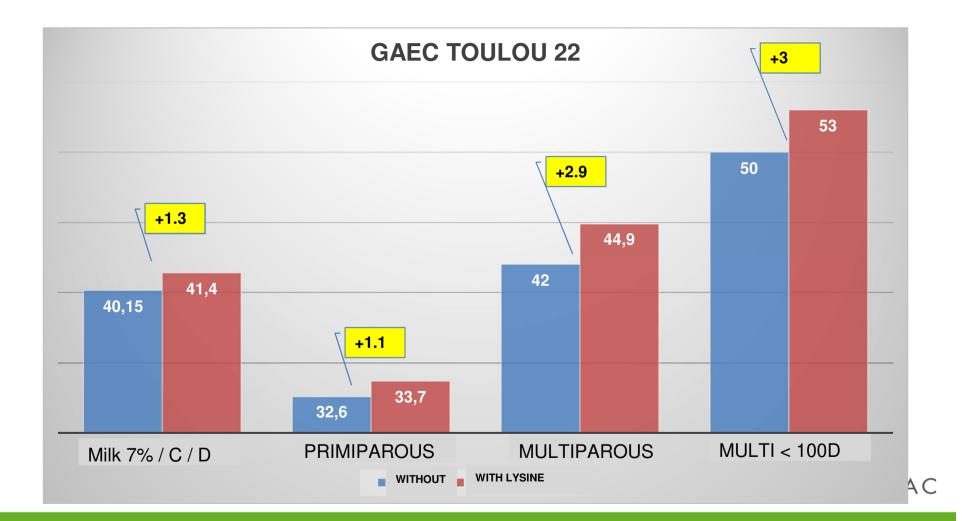
The supplementation in lysine increases the production of 1 kg / d Back to control group production 4 weeks after stopping Lysine Protein and fat rate remain the same

Trial EU : effects of protected lysine (lys-MP 7.7-7%) on transition cows -W4 to W12



Results : Impact on Body weight, Body Condition Score & BHBA

Trial / 125 g Protected Lysine (2 months) on a whole herd Gaec Toulou 22 St Jean kerdaniel



Higher peak, corresponds to the farmer's observations

Clear effect on beginning of lactation \rightarrow + 3 KG milk

Trial Brittany / 50 g protected lysine (2 months) Gaec Toulou 22 St Jean kerdaniel

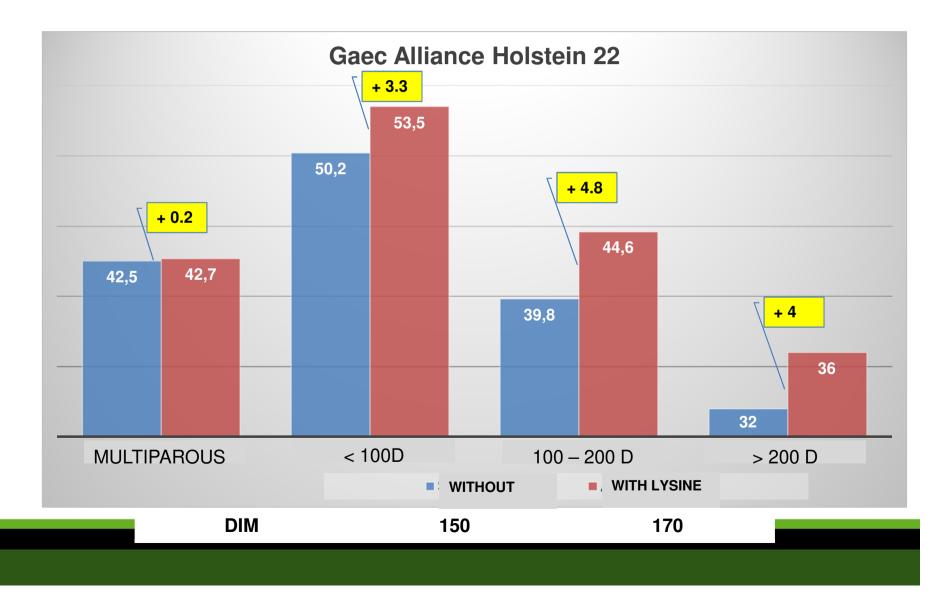
GAEC TOULOU DAGORN	MILK		04/08/19	
dairy breed HOLSTEIN weight kg 67	70			
kg milk : 40 fat g/L : 40 protein g/L :	33			
Feedstuff	kg as fed	kg DM	Nutrients	/kg DM
			CP g	155
			UFL	0.95
Wheat straw	0.30	0.26	PDI g	100
			BPR	7
	42.00	4440	Ca g	7.38
Corn silage	42.00	14.18	P g DCAD meQ	3.84 277
Grass silage	10.00	3.00	DCAD MeQ DM %	42%
Grass shage	10.00	3.00	Conc. %	42 <i>%</i> 30%
			fat g	27.7
			Sugar g	34
			Starch g	270
Soybean meal	1.20	1.06	Lys/Met	3.22
SBM ROBOT	2.00	1.76	·	
			ADF g	181
HYDROLYZED WHEAT	3.00	2.40	NDF g	328
			NDF f %	27.7
			CF g	161
PROTECTED LYSINE + METHIONINE	0.14	0.13		
CONCENTRATE FEED 3 L	2.70	2.36		
				4.00
Mineral Premix	0.65	0.65	Ration cost € / d price milk €/kl	4.00 0.33
SALT	0.65 0.04	0.65	milk 7% in L	0.33 40.4
	0.04	0.04	€/KL	40.4 96.0
			Feed efficiency	90.0 1.61
Total ration kg	62.1	25.9	IOFC / VL	9.34

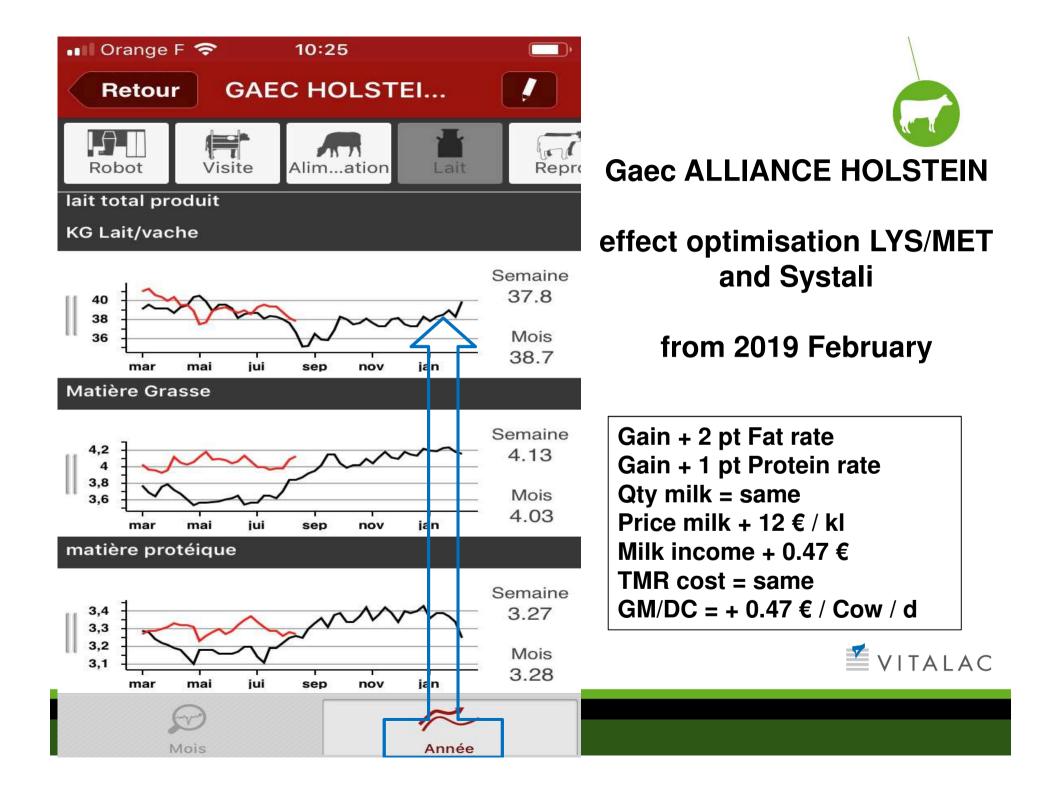
PROTECTED LYS+METH mixed to the trough :

Decreases soya meal at the trough -0.5 kg

Decreases milk urea 220 mg

Dungs more homogeneous


Health +++



Trial / 125 g Protected Lysine Gaec ALLIANCE HOLSTEIN 22

Individual distribution on robot on multiparous < 100DIM et > 40kg

GAEC HOLSTEIN ALLIANCE	PRIMI + I	MULTI	27/08/19	
dairy breed HOLSTEIN Weight kg 680		kg milk :	37.2 fat g/L : 42.5 p 33.8	orotein g/L :
Feed stuffs	kg as fed	kg DM	Nutrients	/kg DM
			CP g	157
			UFL	0.91
			PDI g	98
			BPR	12
			Ca g	7.79
Corn silage	34.00	12.92	Рg	3.86
			DCAD meQ	321
Alfalfa silage	12.00	3.84	DM %	47%
			Conc. %	34%
			fat g	30.1
			Sugar g	24
		• • •	Starch g	288
SBM	3.00	2.64	Lys/Met	3.20
SBM ROBOT	0.94	0.83		
		• • • •	ADF g	206
Corn	4.00	3.45	NDF g	333
Protected Lysine + Methionine	0.12	0.11	NDF f %	27.4
			CF g	187
				99
Concentrate feed robot	2.50	2.19		
			Ration cost € / D	3.86
			Milk basic price €/kl	0.330
		5 5 6 7 8	Milk price paid €/kl	0.354
Mineral premix	0.60	0.60	Income milk € /VL/J	12.7
Soda	0.15	0.15	milk 7% in kg	40.5
			€/KL	95.1
SALT	0.05	0.05	Feed efficiency	1.51
Total ration kg	57.4	26.8	IOFC / VL	8.89

Gaec Alliance Holstein

Average ration 37.2 kg 42.5 Fat rate 33.8 Protein rate 230 Urea 110 SCC 175DIM

Formulation on amino acids

LACTATION

Lys Di = 7-7.2% of PDI Met Di = 2.2- 2.5 % of PDI His Di = 2 - 2.5% of PDI

Ratio LYS/MET 2.8 - 3 = Optimisation of the protein rate 3 - 3.2 = Optimisation of the production

CP between 15 and 16% Adjust the PDI at 98-100% of the needs RDP between 9 and 11% DM BPR between 10 and 15

Objective = NO ENERGY DEFICIT Milk allowed by UF > Milk produced PDI

CLOSE UPS

10 UFL / d 1000-1100 g PDI / d > 80 g LYS Di /d > 25 g MET Di / d BPR > 0

Effects of Lysine + Methionine fed together on transition cows (Osorio et al 2014)

- <u>Dosage on close up cows</u> = 80 g LYS di + 27 g MET di (lys/met=3)
- <u>Dosage of beginning of lactation</u> = LYSdi/ METdi = 3

<u>Effects =</u>

- Increase the appetite before and after calving + 2 kg DM
- Increase the milk production at 28 DIM = + 4 kg ECM
- Provide a better antioxydant status (Gluthation)
- Better liver parameters
- Less ketone bodies
- Better reproduction = reduction of the embryo mortality (19 to 6 %)

EXEMPLE	prepa ve	el	15/08/19	
PREPA - close up Race laitièr	•			
HOLSTEIN Poids kg	, 700			
feedstuff	kg as fed	kg DM	Nutrients	/kg DM
straw	3.00	2.64	CP g	135
			UFL	0.81
			PDI g	79
			BPR	8
corn silage	19.50	6.77	Ca g	14.79
			Рg	3.64
			DCAD meQ	-112
			DM %	48%
wheat	0.30	0.26	Conc. %	21%
			Fat g	25.2
Sunflower meal	0.25	0.22	Sugar g	31
Rapeseed meal	1.00	0.89	Starch g	186
SBM	1.20	1.06	Lys/Mét	2.81
Sugar cane molasses	0.10	0.07		
			ADF g	243
			NDF g	427
LYS + MET supplement	0.10	0.09	NDF f %	38.1
			CFg	217
Ammonium chloride	0.04	0.04	Needs waterL	40
			Ration cost € / D	2.03
Mineral premix dry	0.35	0.35	l l	
Calcium chloride	0.04	0.04	LYS DI g	75
Magnesium chloride	0.03	0.02	MET DI g	27
Calcium carbonate	0.20	0.20	PDI g	1005
			UFL total	10.25
			Mg g	4.4
Total ration kg	26.1	12.6		

Example of a close-up TMR

5 steps to respect in order to formulate on Amino Acids

- Prepare a TMR containing a mix of fermentescible glucids and efficient fibers in order to maximize the DMI, the microbial protein and the milk production. The microbial protein has the best profile with Lys 7.9% and Met 2.6%
- Bring enough degradable nitrogen in order to optimize the needs of the microbial flora in amino acids and ammonia.
 - RDP between 9 and 11%. 10 < BPR < 15. Milk urea around 220 mg / L
 - A lack of RDP reduces the carbohydrates digestion, the VFA production, the synthesis of the microbial protein, the DMI and the milk production.
- Select the meals rich in lysin (soya, colza) and add protected lysin to reach the optimum level of 7-7.2 LYS di %PDI
- Supplement in protected methionin in order to get close to the ratio LYS/MET = 3:1 (Note : A bad choice in sources of protected lysine and methionine can lead to failures)
- Don't overload in PDIA = when the balance LYS/MET is good, PDIA supplies can be decreased and be replaced by carbohydrates to keep supporting the bacteria

Conclusion :

→ Dairy cows don't need PDI but need amino acids
→ The first step is to work on LYSINE and METHIONINE
→ Then, other amino acids will have to be taken in consideration (HIS, LEU,...)

Benefits brought by AA ratio optimization :

- Increase of milk production
- Increase of milk fat and protein
- Allows the reduction of PDIA supplies of 1 to 2 % / DM
- Reduces nitrogen excretion = N urines / N milk / N faecal
- Can work on milk urea around 200 mg / L
- Improves health and reproduction
- Reduces weight loss at the beginning of lactation
- Increases farm profitability = + 0.30 € of income over feed cost/ cow / d (+ 100 € / cow / year)