

Number of cattle and calves on agricultural holdings in the United Kingdom (UK) from 2005 to 2021

(in 1000s)

MARCH 16, 2023

THE NUMBER OF BEEF COWS IN THE U.S. DROPS TO THE LOWEST LEVEL SINCE 1962 AS THE GLOBAL FOOD CRISIS INTENSIFIES

Beef cross timeline

Dairy timeline

Beef timeline

Changing times

- Conventional Semen across all cows
- Introduction of sorted semen
- Production of excess heifers
- Genomic testing to identify profitable females
- Beef as a strategy for the bottom % of dairy herds

Creating value for all links

Dairy

- Fertility
- Calving Ease
- Economics

Feedlot/Veal

- Feed efficiency
- Health
- Gain
- Grid value

Processor

- Carcass weight
- Ribeye size/shape
- Marbling

Consumer

- Cost
- Taste/Tenderness
- Sustainably produced
- · Ethically produced

Shifting a by-product of the dairy industry into a core product for beef production

How do we use beef sires?

What value does beef add to dairy?

			18 TO			1005050			Cost	200					
Sex	In wt	Head	In wt,	Out wt,	DOF	DMI, lb/d	ADG, lb	F/G	gain, \$/lb	Vet, \$/hd	Death,	HCW,	Dress,	Prime,	Choice,
Holsteins	300	425,576	327	1,258	347	15.82	2.65	6	0.54	16.74	3.59	777	61.8	1.8	47.7
Holsteins	400	97,667	451	1,289	302	17.76	2.73	6.55	0.57	14.83	3.58	784	61.6	2.3	50.7
Holsteins	500	49,332	545	1,288	263	18.71	2.80	6.73	0.57	13.84	2.32	792	61.7	2.9	57.2
Holsteins	600	60,930	653	1,298	222	19.92	2.86	7.04	0.59	12.42	2.08	795	61.5	2.8	57.7
Holsteins	700	72,469	749	1,322	190	21.02	2.99	7.13	0.6	11.45	1.69	799	61.2	2.9	57.3
Holsteins	800	80,813	846	1,313	154	22.7	2.99	7.77	0.6	9.65	1.13	806	60.7	3.9	56.5
Holsteins	900	66,616	940	1,403	181	23.59	2.59	9.4	0.65	8.07	1.17	820	60.7	5.0	60.3
Sex	In wt	Head	In wt,	Out wt,	DOF	DMI, Ib/d	ADG,	F/G	Cost of gain, \$/lb	Vet, \$/hd	Death,	HCW,	Dress,	Prime,	Choice,
Steers	300	188,922	364	1,115	298	14.6	2.47	5.93	0.53	21.51	4.16	729.7	64.6	1.2	47.3
Steers	400	711,714	460	1,138	255	15.7	2.61	6.06	0.53	22.11	3.39	740.2	64.5	1.0	43.9
Steers	500	2,119,892	558	1,181	216	17.3	2.83	6.19	0.53	19.54	2.61	761.8	64.3	0.9	46.1
Steers	600	4,363,876	653	1,224	185	18.8	3.03	6.26	0.53	15.96	1.78	786.0	64.1	0.8	45.1
	700	6,224,588	751	1,263	156	20.3	3.23	6.34	0.53	11.37	1.08	808.7	64.0	0.7	44.2
Steers			0.0000	1.00	100000000				200000000000000000000000000000000000000				17/12/10/50/00	9550701	
Steers Steers	800	5,442,413	843	1,303	135	21.8	3.36	6.55	0.53	9.20	0.73	826.3	63.8	0.6	42.5

Rust, S. R., Abney, C. S., Tigner, R., & Lehmkuhler, J. (2005). Comparison of dairy versus beef steers. *Proc. Managing and Marketing Quality Holstein Steers. R. Tigner and J. Lehmkuhler, ed. Wis. Agric. Service Assoc., Madison, WI*, 161-174.

Male calves vs females

	Sex of BeefBuilder™	Breed of Dam	Avg. Birthweight	Hot Carcass Weight	Carcass Adjusted Out-Weight	Ribeye Area
	Steer	Holstein	96	917	1455	14.7
	Steer	Jersey	80	847	1344	14.8
	Heifer	Holstein	88	839	1331	14.7
	Heifer	Jersey	74	756	1201	14.5
Quality Grading						
	Sex of BeefBuilder™	Breed of Dam	Prime	Choice	Select	CAB
	Steer	Holstein	2.5%	71.2%	25.1%	10.3%
	Steer	Jersey	2.7%	78.3%	18.0%	12.2%
	Heifer	Holstein	3.0%	77.1%	18.7%	17.1%
	Heifer	Jersey	3.3%	76.8%	18.2%	12.8%
Yield Grading		0 5				
	Sex of BeefBuilder™	Breed of Dam	Yield Grade 1 & 2	Yield Grade 3	Yield Grade 4 & 5	Dairy Confirmation Carcass
	Steer	Holstein	56.9%	35.5%	7.7%	0.60%
	Steer	Jersey	76.2%	21.6%	2.2%	0.25%
	Heifer	Holstein	63.5%	30.3%	6.1%	0.57%
	Heifer	Jersey	81.8%	16.6%	1.7%	0.69%

Turning a by product into a core product

Change the mindset of dairy producers

Produce beef calves with the same selection pressure as what is placed on replacement dairy females

How

- Understanding feeder needs
- Understanding the consumer and processor needs
- Connect dairies with buyers

Preliminary field study results

Bull	Age in days	Sex	Hot Carcass weight	Value @\$3.25
Better Genetics Bull A	531	F	834 lbs	\$2710.50
Average Genetics Bull B	543	F	790 lbs	- \$143 & 12 extra days
Barn yard Billy group of bulls	562	F	847 lbs	\$42.25 & 31 extra days

RESIDUAL AVERAGE DAILY GAIN (RADG) EPD MARBLING BY MARBLING EPD

VALUE PER DAY BY \$B EPD

RIBEYE AREA BY RIBEYE EPD

DAYS TO SLAUGHTER

Beef breeds

Good

Bad

	Birth Weights	Muscle	Feeding Ability	Marbling	Rib eye
	Wagyu	Belgium Blue	Lim-Flex / SimAngus	Wagyu	Charolais
	Angus	Charolais	Charolais	Angus	Limousin
	Lim- Flex / SimAngus	Limousin	Belgium Blue	Lim – Flex / SimAngus	Lim-Flex / SimAngus
	Limousin	Lim-Flex / SimAngus	Limousin	Charolais	Belgium Blue
	Charolais	Angus	Angus	Limousin	Angus
	Belgium Blue	Wagyu	Wagyu	Belgium Blue	Wagyu

Angus Lim-Flex /SimAngus

Wagyu

Limousin

Charolais

Belgium Blue

Where is beef on dairy going?

Data, data and more data

Cuttability, feed efficiency and health

Beef Products

- Conventional semen
- Sorted male semen
- Male beef embryos

Convention
Al beef
Semen

Sorted beef Semen

Embryos

7

Internal Semex genetics program

- #1 feed efficiency female in the breed
- #1 AxHol bull in the breed
- #5 \$B sire who is the only one in the top 10 with a 10% CED, next closest is top 45%
- All sires born are in the top 1% for AxHol
- Boviteq Research and Development

- Beef cattle numbers are decreasing
 - Pressure on supply
- Feed and input costs are increasing
 - Pressure on the quality of cattle fed
- Growing demand globally for beef protein
 - Population growth and need for nutrition
- Public perception of the industry
- Environmental impact and carbon credits
- Volume of meat produced
- Quality of meat produced

Selecting the right sire is critical

- Our sires have been pre selected to meet the needs of the entire supply chain
- All Black calves are not created equal
- The right beef x dairy calves are more sustainable, more environmentally friendly and create more volume of high quality high value product for the enjoyment of consumers

